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Abstract
We extend the results of Strelchenko and Vassilevich (2007 Phys. Rev. D 76
065014) to noncommutative gauge theories at finite temperature. In particular,
by making use of the background field method, we analyse renormalization
issues and the high-temperature asymptotics of the one-loop Euclidean free
energy of the noncommutative U(1) gauge model within imaginary time
formalism. As a by-product, the heat trace of the non-minimal photon kinetic
operator on noncommutative S1×R3 manifold taken in an arbitrary background
gauge is investigated. All possible types of noncommutativity on S1 × R3 are
considered. It is demonstrated that the non-planar sector of the model does not
contribute to the free energy of the system at high temperature. The obtained
results are discussed.

PACS numbers: 11.10.Nx, 11.10.Wx, 11.15.Kc

1. Introduction

Understanding fundamental properties of hot plasma in noncommutative gauge theories,
especially in NC QED, remains one of the most challenging problems in high-energy physics.
Indeed, because of the noncommutative nature of spacetime, even the simplest thermal
U(1) model exhibits such odd features as generation of the magnetic mass (associated with
noncommutative transverse modes), appearance of a tachyon in the spectrum of quasi-particle
excitations etc. [2–7, 9, 10]. These observations concern mainly space/space noncommutative
theories where there are no notorious difficulties with causality and unitarity [11, 12]. At
the same time, it was realized that a space/space NC QFT may have non-renormalizable
divergences as a consequence of UV/IR mixing phenomenon [13] (see also [14] for recent
discussion).

The purpose of the present work is to gain some better insight into basic aspects of the
Euclidean-time formalism in thermal gauge theories on NC S1×R3, including renormalization
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and the high-temperature asymptotic of the (Euclidean) free energy (FE). For the sake of
completeness, three different types of noncommutative spacetime will be worked out: namely,
space/space, full-rank and pure space/time noncommutativities. We begin our analysis with
the investigation of one-loop divergences in the Euclidean NC U(1) gauge model on S1 × R3

to make sure that the theory does exist at least at the leading order of the loop expansion.
Then we will turn to the evaluation of the high-temperature asymptotics of the one-loop FE.
The main attention will be paid to the non-planar sector of the perturbative expansion. Thus,
it was discovered in [4, 5] that there is a drastic reduction of the degrees of freedom in the
non-planar part of FE. Here, we will arrive at the same qualitative picture for all types of
noncommutativity.

2. The model

Consider U(1) gauge model on NC S1 × R3. Its action reads1

S = − 1

4g2

∫
M

d4xGµν � Gµν, (1)

where the integration is carried out over M = S1×R3 manifold and Gµν denotes the curvature
tensor of U(1) gauge connection.

To investigate quantum corrections to (1) we employ the background field method. To
this aim we split the field Aµ into a classical background field Bµ and quantum fluctuations
Qµ, i.e. Aµ = Bµ + Qµ. Then, substituting this decomposition into (1), we extract the part of
the action (1) that is quadratic in quantum fluctuations. In a covariant background gauge it is
written in the form (we use notations of [27])

S2[B,Q,C,C] =
∫
M

d4x

(
− 1

2g2
Qµ(x)D(ξ)

µν Qν(x) + C(x)DC(x)

)
, (2)

where

Dξ
µν = −

[
δµν∇2 +

(
1

ξ
− 1

)
∇µ∇ν + 2(L�(Fµν) − R�(Fµν))

]
(3)

is the photon kinetic operator and D = −∇µ∇µ is the inverse propagator of ghost particles.
Here, ∇µ and Fµν stand for the covariant derivative and the curvature tensor of the background
field Bµ, respectively. Functional integration of the partition function w.r.t. quantum fields
gives the following formal expression for the 1-loop effective action (EA),

�(1)[B] = �gauge[B] + �ghost[B] = 1
2 ln det(Dξ ) − ln det(D). (4)

As well known this quantity is divergent and must be regularized. This will be done by
zeta-function regularization in what follows.

For the study of thermal QFT one needs to introduce another important object—the free
energy of the system. Recall, that there are two definitions of this quantity. One of them
presents the canonical FE,

FC(β) = β−1
∑

ω

ln(1 − e−βω), (5)

which has clear physical meaning of ‘summation over modes’. The other one expresses FE in
terms of the Euclidean EA,

FE(β) = β−1�E(β), (6)

1 As usual, we will work in the rest frame of the heat bath with u = (0, 0, 0, 1), where u is the heat bath four velocity.
All fields obey periodic boundary conditions.
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and is much more convenient from practical point of view. These two definitions are related
by FE(β) = FC(β) + E0, where E0 is the energy of vacuum fluctuations. It should be noted,
however, that a rigorous proof of this relation even in conventional field theories may be a
highly non-trivial task (e.g. for thermal systems in curved spaces, see for instance [15, 16]).
The equivalence of the canonical and Euclidean FE in QFT with spacetime noncommutativity
(although with some heuristic assumptions) was discussed in [1].

3. Zeta-function regularization

In the zeta regularization scheme, the regularized EA (4) is represented by [17–19]

�(1)
s [B] = − 1

2µ2s�(s)(ζ(s,Dξ ) − 2ζ(s,D)), (7)

where ζ(s,Dξ ) and ζ (s,D) are zeta-functions of each operator in (4), s is a renormalization
parameter and µ is introduced to render the mass dimension correct. The regularization is
removed in the limit s → 0 giving

�
(1)
s→0[B] = −1

2

(
1

s
− γE + ln µ2

)
ζtot(0) − 1

2
ζ ′

tot(s), (8)

where γE is the Euler constant and ζtot(s) = ζ(s,Dξ ) − 2ζ(s,D).
To deal with the zeta-functions we need to introduce the heat traces for the operators Dξ

and D, respectively. Recall that for a star-differential operator D it is defined as

K(t,D) = TrL2(exp(−tD) − volume term), (9)

where t is the spectral (or ‘proper time’) parameter. Symbol TrL2 denotes L2-trace taken on
the space of square integrable functions (on S1 ×R3 with periodic boundary conditions in our
case) and may also involve the trace over vector, spinor etc. indices. The main technical result
here is that on a (flat) NC manifold the heat trace (9) can be expanded in power series in small
t as

K(t,D) =
∞∑

n=1

t (n−4)/2an(D). (10)

For further details, we refer the interested reader to [1, 20–25]. Now, the zeta-function ζtot(s)

has the following integral representation:

ζtot(s) = 1

�(s)

∫ ∞

0

dt

t1−s
(Kξ (t,Dξ ) − 2K(t,D)), (11)

and to analyse the structure of (8) one should actually evaluate the heat trace coefficients
for each operator entering (4). For instance, taking into account the relation ak(D) =
Ress=(4−k)/2�(s)ζ(s,D), the pole part of (8) can be re-expressed through the heat trace
coefficients as

�
(1)
pole[B] = −1

2

(
1

s
− γE + ln µ2

)
(a4(D

ξ ) − 2a4(D)). (12)

That is, on a four-dimensional manifold it is determined by the fourth heat trace coefficients.

4. Evaluation of the heat trace coefficients

To obtain the heat trace asymptotics of the non-minimal operator (9) it is convenient to use the
calculating method by Endo [26] generalized on a NC case [27]. Namely, if the background
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field satisfies the equation of motion, the following relation holds2:

Kξ(t,D(ξ)) = Kξ=1(t,D(ξ=1)) −
∫ t

ξ

t

dτ

∫
M

d4x(∇µ∇′
µK(x, x ′; τ |β) − volume term)|x=x ′ ,

(13)

where K(x, x ′; τ |β) is the thermal heat operator of the inverse ghost propagator. Note that RHS
of this relation consists of the heat traces of minimal star-differential operators. Calculating
procedure for such objects is standard and described, for instance, in [23]. In particular, it
was found that the heat trace expansion for a generalized star-Laplacian3 contains coefficients
of two types: the so-called planar and mixed heat trace coefficients. In our example, the first
planar heat trace coefficient is given by

a
pl.tot.
4 := a4(D

(ξ)) − 2a4(D) = 1

16π2

(
−11

3

)∫
M

d4xFµν � Fµν. (14)

Evaluation of the mixed heat trace coefficients, however, is more involved. Here we inspect
three different cases.

(i) Full-rank noncommutativity. To simplify computations we assume that the deformation
matrix � has the canonical form:

� =
(

θS 0
0 ϑS

)
, S =

(
0 1

−1 0

)
. (15)

However, the reader should be warned that, in general, a reference frame where the matrix
� has the block off-diagonal form (15) does not necessarily coincide with the reference
frame of the heat bath. The first non-trivial mixed coefficient can now be easily evaluated
and has the form (see also [1] for some technical details)

amix.tot.
5 = − ξ−1/2

2βθ2π5/2

∑
n∈Z

∫
R2×S1

dx⊥ dx4
∫

R2×S1
dy⊥ dy4

∫
R

dx3

×
∑

µ,µ �=3

Bµ

(
x1, x2, x3 +

π |ϑ |n
β

; x4

)
Bµ

(
y1, y2, x3 − π |ϑ |n

β
; y4

)
. (16)

This coefficient is divergent as θ → 0 and/or ϑ → 0 that is a manifestation of the
well-known UV/IR phenomenon [28–30].

(ii) Pure space/time noncommutativity (�ij = 0 and �i4 is directed along x‖ axis). In this
case the first mixed heat trace coefficient is presented by

amix.tot.
3 = − 1

2βπ3/2

(
2 −

√
ξ
) ∑

n∈Z

∫
S1×S1

dx4 dy4
∫

R3
dx⊥ dx‖

×B4

(
x⊥, x‖ +

π |ϑ |n
β

; x4

)
B4

(
x⊥, x‖ − π |ϑ |n

β
; y4

)
. (17)

(iii) Space/space noncommutativity (�ij �= 0,�4i = 0). One finds

amix.tot.
4 = (ln ξ − 2)

8θ2π3

∫
S1×R

dx3 dx4
∫

R2×R2
dx⊥ dy⊥

×
∑
i=1,2

Bi(x⊥, x3; x4)Bi(y⊥, x3; x4). (18)

From (12) we see that this coefficient does contribute to the pole term of the one-loop EA
and, hence, affects renormalization of the model that will be explained in a moment.

2 Note that one has to eliminate volume divergences by adding appropriate terms, cf expression (9).
3 That is, which includes both left and right Moyal multiplications.
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5. Renormalization and high-temperature asymptotics

Let us now look a little more closely at the divergent part of EA (12). Clearly, in the case of
noncommutative compact dimension it is defined solely by the planar heat trace coefficient
(14). That is, the pole part of the one-loop EA has the form

�
(1)
pole[B] = − 1

2s

∫
M

d4x

(
−(4π)−2 22

6
Fµν � Fµν

)
, (19)

leading thus to the standard renormalization group. We see that the source of the UV divergence
in (8) is associated with the original four-dimensional field theory and this divergence is
removed by ordinary renormalization at zero temperature. However, the situation changes
drastically when the compact coordinate is commutative: in this particular case the expression
(19) contains an additional term due to the mixed heat trace coefficient (18). Although this new
term is also temperature independent, it brings into EA a non-local and, moreover, gauge-fixing
dependent divergence which cannot be eliminated by any renormalization prescription.

To obtain high-temperature asymptotics of the one-loop EA we rewrite (7) as

�(1)
s [B] = µ2s

∑
k=2

∫ ∞

0

dt

t3−s
t

k
2

((
−1

2
ak(D

ξ ) + ak(D)

)

+ 2
∑
n=1

e− β2n2

4t

(
−1

2
a

planar
k (Dξ ) + a

planar
k (D)

))
, (20)

where we retained all exponentially small terms in the planar sector as well. (They must be
taken into account when the parameter β is small.) The evaluation of the planar part proceeds
exactly as in the conventional thermal SU(2) gluodynamics giving

Stree[B] + �
(1)
planar[B] 	

(
− 1

4g2
R(T )

∫
M

d4xFµν � Fµν

+
∑
k=6

(
β

2

)2k−4 (
a

planar
k (Dξ ) − 2a

planar
k (D)

)
ζ(2k − 4)�(k − 2)

)
, (21)

from which one deduces high-temperature behaviour of NC U(1) effective coupling

g2
R(T ) = g2

R

(
1 +

g2
R

4π2

11

3
ln (T /T0)

)−1

. (22)

It should be emphasized, however, that the formula (22) makes sense unless a compact
dimension is commutative: as we have already seen, within space/space NC U(1) model one
cannot renormalize the charge because of the non-planar contribution (18).

Now consider the non-planar part of EA. For the sake of definiteness let us focus on the pure
space/time noncommutativity. First of all, we note that the expression (17) is valid whenever
the condition |ϑ |/β �= 0 holds. Hence, it is interesting to explore high-temperature regime
when |ϑ |/β 
 C0, C0 ∈ R+. We assumed that the background field Bµ ∈ C∞(S1 × R3) and,
therefore, it should vanish exponentially fast at large distances. For n �= 0 one estimates

Bµ

(
x1, x2, z +

π |ϑ |n
β

; x4

)
Bµ

(
y1, y2, z − π |ϑ |n

β
; y4

)
∼ C2 exp

(
−C1

|ϑ |
β

)
,

|ϑ |
β


 C0,

where C1 is a positive constant which characterizes the fall-off of the gauge potential at large
distances. Up to an inessential overall constant the contribution of the first mixed coefficient
to the effective potential can be estimated as

atot
3 = (1 +

√
ξ)

2β(π)3/2

∫
S1×S1

dx4 dy4
∫

R3
dxB4(x̄; x4)B4(x̄; y4). (23)

5
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Note that this expression is insensitive to the value of the deformation parameter4. Moreover,
since in the limit β → 0 the main contribution to (23) comes from the zero bosonic modes,
the mixed heat trace coefficients behave as ∼ βC, where C is some temperature-independent
quantity. From the definition (6) it follows that, at least on the one-loop level, the non-
planar part of EA provides the temperature-independent contribution to the Euclidean FE and
therefore can be neglected in the high-temperature limit.

6. Conclusion

In this paper, we have investigated the one-loop quantum corrections to EA (resp. Euclidean
FE) in NC thermal U(1) theory within the imaginary time formalism. Let us summarize the
obtained results.

First, in the space/space noncommutative QED, the renormalizability of the theory is
ruined by the non-planar sector of the perturbative expansion. This phenomenon was already
observed, for instance, in [13] (see also [24, 27]). At the same time, in the case of a
noncommutative compact dimension the theory can be renormalized, at least on one-loop
level, by the standard renormalization prescription.

Second, we calculated the heat trace asymptotics for the non-minimal photon kinetic
operator on NC S1 × R3. We saw, in particular, that the noncommutativity of the compact
coordinate results in arising of additional odd-numbered coefficients in the heat trace
expansion. Furthermore, in the case of pure space/time noncommutativity the first non-
trivial mixed contribution to the heat trace appears in amixed

3 . Although this coefficient does
not affect counterterms in the zeta-function regularization, it can lead to certain troubles in
different regularization schemes, see [1] for further discussion.

Third, we obtain the high-temperature asymptotics of the one-loop Euclidean FE (6).
It is rather remarkable that the non-planar sector does not contribute at high temperature
for any type of noncommutativity. This seems to be in accordance with observations made
in earlier works where a drastic reduction of the degrees of freedom in the non-planar part
of FE was discovered [4, 5]. There is a subtlety, however, that one should keep in mind.
Namely, if noncommutativity does not involve time, there are no difficulties in developing the
Hamiltonian formalism for a NC theory and equivalence of the canonical and Euclidean free
energies is proved by standard arguments [31]. Contrary to this, in the space/time NC theories
there is no good definition of the canonical Hamiltonian and, consequently, of the canonical
FE (5) although some progress in this direction has been made recently in [1].

Finally, an extension of our results to more general case of U(N) gauge symmetry can
be done straightforwardly. Indeed, one can show that the mixed heat trace coefficients are
completely determined by U(1) part of the model [27]. In the diagrammatic approach this
implies the known fact that non-planar one-loop U(N) diagrams contribute only to the U(1)

part of the theory [28, 32].
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